-16t^2+64t+8=t

Simple and best practice solution for -16t^2+64t+8=t equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -16t^2+64t+8=t equation:


Simplifying
-16t2 + 64t + 8 = t

Reorder the terms:
8 + 64t + -16t2 = t

Solving
8 + 64t + -16t2 = t

Solving for variable 't'.

Reorder the terms:
8 + 64t + -1t + -16t2 = t + -1t

Combine like terms: 64t + -1t = 63t
8 + 63t + -16t2 = t + -1t

Combine like terms: t + -1t = 0
8 + 63t + -16t2 = 0

Begin completing the square.  Divide all terms by
-16 the coefficient of the squared term: 

Divide each side by '-16'.
-0.5 + -3.9375t + t2 = 0

Move the constant term to the right:

Add '0.5' to each side of the equation.
-0.5 + -3.9375t + 0.5 + t2 = 0 + 0.5

Reorder the terms:
-0.5 + 0.5 + -3.9375t + t2 = 0 + 0.5

Combine like terms: -0.5 + 0.5 = 0.0
0.0 + -3.9375t + t2 = 0 + 0.5
-3.9375t + t2 = 0 + 0.5

Combine like terms: 0 + 0.5 = 0.5
-3.9375t + t2 = 0.5

The t term is -3.9375t.  Take half its coefficient (-1.96875).
Square it (3.875976563) and add it to both sides.

Add '3.875976563' to each side of the equation.
-3.9375t + 3.875976563 + t2 = 0.5 + 3.875976563

Reorder the terms:
3.875976563 + -3.9375t + t2 = 0.5 + 3.875976563

Combine like terms: 0.5 + 3.875976563 = 4.375976563
3.875976563 + -3.9375t + t2 = 4.375976563

Factor a perfect square on the left side:
(t + -1.96875)(t + -1.96875) = 4.375976563

Calculate the square root of the right side: 2.091883497

Break this problem into two subproblems by setting 
(t + -1.96875) equal to 2.091883497 and -2.091883497.

Subproblem 1

t + -1.96875 = 2.091883497 Simplifying t + -1.96875 = 2.091883497 Reorder the terms: -1.96875 + t = 2.091883497 Solving -1.96875 + t = 2.091883497 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '1.96875' to each side of the equation. -1.96875 + 1.96875 + t = 2.091883497 + 1.96875 Combine like terms: -1.96875 + 1.96875 = 0.00000 0.00000 + t = 2.091883497 + 1.96875 t = 2.091883497 + 1.96875 Combine like terms: 2.091883497 + 1.96875 = 4.060633497 t = 4.060633497 Simplifying t = 4.060633497

Subproblem 2

t + -1.96875 = -2.091883497 Simplifying t + -1.96875 = -2.091883497 Reorder the terms: -1.96875 + t = -2.091883497 Solving -1.96875 + t = -2.091883497 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '1.96875' to each side of the equation. -1.96875 + 1.96875 + t = -2.091883497 + 1.96875 Combine like terms: -1.96875 + 1.96875 = 0.00000 0.00000 + t = -2.091883497 + 1.96875 t = -2.091883497 + 1.96875 Combine like terms: -2.091883497 + 1.96875 = -0.123133497 t = -0.123133497 Simplifying t = -0.123133497

Solution

The solution to the problem is based on the solutions from the subproblems. t = {4.060633497, -0.123133497}

See similar equations:

| -.5y+24+7.5y=360 | | 16t^2+64t+8=t | | (2x)/(4.8)=3.1 | | -2y+8=-7(y+1) | | 6r+2*9=3r*4 | | -(4-6a)-(-4+3a)= | | log(4x^3)-logx=2 | | -2w^2-50w+84=0 | | -9=20n-15 | | 3y^5-5y^3+21y^2-35=0 | | 1-(9/7x)=5/2 | | x^2+-5x-6=0 | | 10x^2+5xy-15y^2=0 | | ln(ln(x))=2 | | 14-2x=-6x+14 | | 13y+5x=2 | | 22.50-5.00=m | | c=17p/(100-p) | | 9=-(y-8)+15 | | 4x-6y-4x-2y= | | 2x-7=-5x+3.5 | | 3y=0.24 | | 1.8x+32=f | | -14=-2(b-19)+-18 | | (4x/9)-(1/4)=1-(3/4)(x-(1/12)) | | 2(4y+7)=-62 | | 8m-5-2m= | | 4x+14-7x=18-18x+15x-4 | | 24y^2-2y-y=0 | | (x+3.3)+x=718.7 | | 8x-3(-3x+27)=123 | | 10=2(m-14) |

Equations solver categories